Главная

Wednesday, 5 April 2017

Руководство по оптимизации JPG.

Добрый день!



Очередное детальное руководство от команды Айри.рф  про то как правильно оптимизировать JPEG изображения на сайте без видимых потерь качества, чтобы сократить их размер до 50%. Замечу что первые 5 методов доступны даже новичку, с остальными следует быть особо осторожными.
Формат JPEG в силу DCT-кодирования и таблиц Хаффмана изначально подразумевает потерю качества. И даже сохранение в режиме "100%" не устранит потерь. Но эти потери можно сделать незаметными для глаза или допустимыми в конкретном случае использования. Или использовать некоторые особенности формата, чтобы кодировать JPEG совсем без потерь.

1. Оптимизация для Web
Оптимизация для Web
Базовый совет: при сохранении в любом редакторе (Photoshop, Gimp и др.) используйте отдельную опцию «Сохранить для Web». Это сделает изображение совместимым по цветовой палитре со всеми браузерами. А также удалит из него некоторую дополнительную информацию (например, превью-изображения), которая необходима обычным редакторам для быстрого просмотра множества изображений, но совершенно не подходит браузерам (которые не используют превью в JPEG-изображениях ни в каком виде).

Естественно, что фактические размеры изображения должны соответствовать максимальным размерам, используемым на сайте. Наиболее частая ошибка в работе с картинками на сайте: взять их в исходном виде, без приведения к нужным размерам. Это многократно увеличивает размер сайта и существенно замедляет его загрузку.


2. Удаление мета-информации
Удаление мета-информации
В качестве дальнейшей оптимизации JPEG без воздействия на цветовые данные можно и стоит рассмотреть различные утилиты для удаления EXIF-чанков и комментариев.

Лучшей в данном классе утилит будет ExifTool, которая доступна для всех платформ. ExifTool распознает дополнительные теги (EXIF chunks) почти всех устройств и прикладных программ и позволяет безболезненно для качества изображения их убрать (или извлечь или заменить).

Удаление мета-информации и EXIF-chunks производится вне основных данных изображения (DCT-преобразования и таблиц Хаффмана) и гарантирует сохранение качества.


3. «Последовательная» оптимизация

«Последовательная» оптимизация
Формат JPEG содержит еще одну интересную особенность — возможность делать несколько кадров изображения, отрисовывая их последовательно (от этого и происходит термин «последовательные» (progressive) JPEG). Есть вероятность, что первоначально эту возможность хотели использовать для JPEG-анимации, но в конкретной реализации она нашла лучшее применение.
«Последовательные» JPEG улучшают пользовательское восприятие при загрузке больших файлов (сначала показывается смазанная копия, затем она улучшается в поступлением данных) и обладают меньшим размером (в среднем, если JPEG изображение больше 10 Кб).
Сейчас «последовательные» JPEG файлы поддерживаются всеми браузерами, и нет никаких причин их не использовать. Не всегда такие файлы будут меньше обычных, но проверку на размер обычной и «последовательной» версии необходимо выполнять при сохранении или оптимизации файлов.
Выигрыш в размере «последовательных» JPEG обычно не больше 20% от исходного размера файла.
4. Сохранение не в 100% качестве
Удаление мета-информации
100% качество (максимальный уровень качества в графическом редакторе) при сохранении JPEG-файлов не подразумевает отсутствие потерь. В силу ограничений формата каждый JPEG файл представляет информацию с потерями. Но можно уменьшить размер файла и, практически, не увеличить чисто потерь.
Оптимальным будет использование 90-95% максимального качества (в зависимости от вашего редактора или консольной утилиты): это либо 90-95% при максимуме 100%, либо 10-11 при максимуме в 12. В этом случае размер изображения будет меньше при том же визуальном качестве. И из изображения не будут удалены небольшие детали (что может произойти при дополнительных оптимизациях, включаемых в вашем редакторе, по умолчанию, при качестве меньше 90).
Как видно из графика выше, даже использование качества 95 вместо 100 обычно позволяет сократить размер в 1,5-2 раза. Я лично сохраняю в Paint.NET на 80%.
5. Использование другого формата
Использование другого формата
Не всегда изображения в JPEG-формате будут занимать меньше места. Иногда правильнее сохранять их в SVG (логотипы), PNG (при небольшой цветовой палитре) или даже в WebP (если все браузеры ваших пользователей это поддерживают). Даже если формат WebP не полностью поддерживается в браузерах (на текущих момент покрытие составляет в районе 70%), можно сохранять изображение в двух форматах — лучшем из стандартных (например, JPEG) и альтернативном (WebP) и отправлять пользователям те изображения, которые поддерживает их web-браузер (определяя это по HTTP заголовку Accept).
Правильное определение формата изображение может сократить размер в 2-3 раза.
6. Оптимизация для Retina-устройств
Оптимизация для Retina-устройств
При использовании изображений двойного разрешения для соответствующих устройств (с Retina) можно применять следующую хитрость. Поскольку физически большее изображение отобразится в меньшую площадь, то исходное изображение можно сохранить с существенно меньшим качеством (при этом потери качества не будут заметны при попиксельном сравнении).
На примере выше более высокая степень сжатия для изображения с двойной плотностью пикселей дало 30% выигрыша в размере без видимой потери качества.
Описанные методики позволяют существенно (иногда в несколько раз) сократить размер JPEG-изображения и применить к ним другие, продвинутые техники оптимизации.
7. Оптимизация для решетки 8×8
Оптимизация для решетки 8×8
Достаточно известный прием (автор метода — Сергей Чикуёнок), использующий особенность JPEG сжимать изображение квадратами 8×8 (из-за DCT преобразования). Для оптимальной четкости изображения (и понижения его качества без видимого ущерба для картинки) нужно выровнять границы элементов изображения по решетке 8×8.
При переводе в формат JPEG изображение нарезается на квадраты 8×8, которые могут быть независимо оптимизированы (с большим числом деталей — с лучшим качеством, однотонные — с меньшем качеством). Если детали изображения не будут совпадать с решеткой 8×8, то на границе решетки будет существенное размытие деталей (которое, конечно, можно нивелировать за счет более высокого качества сжатия — но это приведет к увеличению размера изображения).
Выигрыш от такой техники обычно составляет 5-10%.
Для автоматизации техники возможно настроить смещение границ изображения на 1-4 пикселя по обоим осям с тем же качеством (и сохранение среди результирующих изображений). Изображения меньшего размера будет лучше оптимизировано под решетку 8×8.
8. Селективная оптимизация
Селективная оптимизация
Логичным продолжением оптимизации для решетки 8×8 будет выборочное качество изображения (количество деталей) для разных зон изображения. Техника называется Selective optimization и доступна в нескольких инструментах.
В частности, в Adobe Photoshop необходимо создать одну или несколько масок изображений для лучшего качества (остальное изображение будет сжато сильнее) и применить ее при сохранении JPEG изображения (подробная инструкция). В результате — при том же качестве отображения деталей размер изображения будет меньше.
Эта техника дает выигрыш в 3-20% относительно исходного изображения.
9. Оптимизация цвета и яркости
Оптимизация цвета и яркости
Еще один прием от Сергея позволяет отбросить цветовую информацию для тех частей изображения, которые комбинируют черный и другой цвет в мелких текстурах. За счет уменьшения информации о смене цвета JPEG получается меньше по размеру, но на качестве изображения это не отражается (ведь все равно, какая нулевая яркость у цвета, если он черный).
Прием достаточно сложен в освоении: нужно переключиться в режим Lab Color, затем в Channels выбрать цвета, у которых уменьшить детализацию (смазать фон), затем меняем Levels, чтобы цвет изображения остался прежним. Полная версия руководства доступна здесь.
Выигрыш от таких манипуляций с изображением может достигать еще 10-15%.
10. Оптимизация субвыборки
Оптимизация субвыборки
В качестве более автоматизируемой альтернативы уменьшению цветовой информации с сохранением яркости изображения можно рассмотреть технику Chroma subsampling (субвыборка яркости). Если кратко, то при сохранении канала яркости в YCbCr-представлении изображения (Y — яркость, Cb — один цвет (синий), Cr — второй цвет (красный)) уменьшаются различия в цветах соседних пикселей. 1×1 subsampling означает отсутствие каких-либо изменений в цвете, 2×1 и 1×2 усредняют информацию только по одному измерению (горизонтали или вертикали, соответственно). 2×2 subsampling усредняет информацию сразу в 4 пикселях.
В другом представлении схемы — J:a:b (например, 4:2:2) — первая цифра означает ширину области усреднения (в данном случае 4 пикселя), вторая цифра — число результирующих значений цветов в первой строке, третья цифра — число результирующих цветов во второй строке. Всего строк 2 (высота области — 4 пикселя). Таким образом, схема 4:2:2 соответствует 2×1 subsampling, 4:4:4 — 1×1 subsampling, 4:2:0 — 2×2 subsampling, 4:4:0 — 1×2 subsampling.
Последнюю схему subsampling поддерживает большое количество оборудования и прикладных программ. В частности, ImageMagick (через опцию -sampling-factor) и GIMP. По результативности схема 4:2:0 позволяет выиграть 17% размера изображения.
11. Оптимизация таблиц Хаффмана
Оптимизация таблиц Хаффмана
Кодирование Хаффмана позволяет представить цветовую информацию (по разным каналам) в качестве сжимаемой таблицы (с потерей информации). JPEG-файлы используют именно эти таблицы. Оптимальный выбор порядка расположения коэффициентов в такой таблице позволяет существенно сократить ее размер. Этим и пользуются различные варианты утилит для оптимизации таблиц Хаффмана.
Наиболее известной является jpegtran, которая входит в набор libjpeg-progs и во множество утилит редактирования и оптимизации изображения. Менее известным вариантом оптимизатора является набор библиотек libjpeg-turbo, который содержит улучшенные инструкции и дополнительную оптимизацию для таблиц Хаффмана.
И совсем малоизвестным будет пакет mozjpeg, который реализует все наработки libjpeg-turbo и некоторые дополнительные улучшения по производительности. Каждая из описанных библиотек обратно совместима с jpegtran (и может использоваться как полноценная замена этой утилите).
Выигрыш от оптимизированных таблиц Хаффмана составляет 5-20% на изображение.

No comments:

Post a Comment

А что вы думаете по этому поводу?